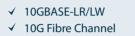


10.3125Gb/s CSFP BIDI Transceiver

APCSPxxB33xDL10


10.3125Gb/s CSFP BIDI Transceiver

APCSPxxB33xDL10

Product Features

- ✓ Two Bi-Directional transceivers in one SFP package
- ✓ Up to 10.3125Gb/s data links
- ✓ Duplex LC connector
- ✓ Hot-pluggable SFP footprint
- ✓ Uncooled DFB laser transmitter
- ✓ RoHS compliant and Lead Free
- ✓ Up to 10km on 9/125um SMF
- ✓ Metal enclosure for lower EMI
- ✓ Single +3.3V power supply
- ✓ Compliant with CSFP MSA 2.0 (Option 2)
- ✓ Commercial operating temperature optional

Applications

COLOR COLOR

Product Selection

Part Number	Wavelength	Operating Case temperature
APCSP23B33CDL10	Tx-1270 / Rx-1330	Commercial
APCSP32B33CDL10	Tx-1330 / Rx-1270	Commercial
APCSP23B33IDL10	Tx-1270 / Rx-1330	Industrial
APCSP32B33IDL10	Tx-1330 / Rx-1270	Industrial

Regulatory Compliance

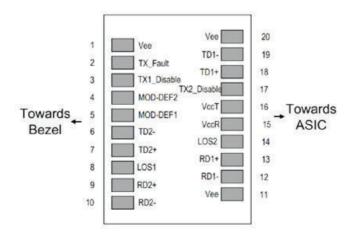
- ESD to the Electrical PINs: compatible with MIL-STD-883 Method 3015
- ESD to the Duplex LC Receptacle: compatible with EN 61000-4-2
- Immunity compatible with EN 61000-4-3
- EMI compatible with FCC Part 15 Class B
- Laser Eye Safety compatible with FDA 21CFR 1040.10 and 1040.11 IEC 60950, IEC60825-1,2
- RoHS compliant with RoHS 2.0(2015/863/EU)-amending

Pin Descriptions

Pin	Symbol	Name	Ref.
1	VeeT	Transmitter Ground (Common with Receiver Ground)	
2	TX Fault	Transmitter Fault.	1
3	TX1_ Disable	Transmitter Disable of Ch1; Turns off transmitter laser output of Ch1.	
4	MOD_DEF(2)	2-wire Serial Interface Data Line (SDA).	
5	MOD_DEF(1)	2-wire Serial Interface Clock Line (SCL).	
6	TD2-	Inverted Transmit Data Input of Ch2.	
7	TD2+	Transmit Data Input of Ch2.	
8	LOS1	Loss of signal for Ch1.	
9	RD2+	Received Data Output of Ch2.	
10	RD2-	Inverted Received Data Output of Ch2.	
11	VeeT	Transmitter Ground.	
12	RD1-	Inverted Received Data Output of Ch1.	
13	RD1+	Received Data Output of Ch1.	
14	LOS2	Loss of signal for Ch2.	
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	Tx2_Disable	Transmitter Disable of Ch2; Turns off transmitter laser output of Ch2.	
18	TD1+	Transmit Data Input of Ch1.	
19	TD1-	Inverted Transmit Data Input of Ch1.	
20	VeeT	Transmitter Ground .	

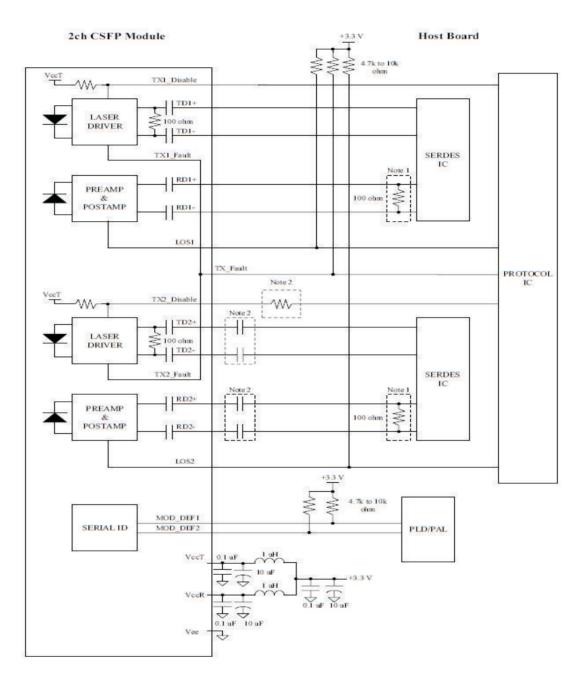
Notes:

1. Circuit ground is internally isolated from chassis ground.


2.TX_Fault is internally OR output for TX fault conditions in either Channel 1 or Channel 2. In order to determine which

channel is at fault, the Host can read the internal memory bits.

3.Laser output disabled on TX Disable >2.0V or open, enabled on TX Disable<0.8V.


4.LOS is open collector output. Should be pulled up with 4.7k – 10kohms on host board to a voltage between 2.0V and 3.6V.

Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Pin-out of Connector Block on Host Board

Recommend Circuit Schematic

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		+4.0	V	
Storage Temperature	TS	-40		+85	°C	
Operating Humidity	RH	0		85	%	

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Power Supply Voltage	Vcc	3.13	3.30	3.47	V	
Power Supply Current	lcc		400	500	mA	
	Тс	0		+70	°C	
Case Operating Temperature	ТІ	-40		+85	°C	
Data Rate			10.3		Gbps	
9/125um G.652 SMF	Lmax			10	km	

Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Input differential impedance	Rin	-	100	-	Ω	1
Single ended data input swing	Vin, pp	120	-	850	mV	
TX Disable-High	-	Vcc -0.8	-	Vcc	V	
TX Disable-Low	-	Vee	-	Vee+ 0.8	V	
TX Fault-High	-	Vcc-0.5	-	Vcc	V	
TX Fault-Low	-	Vee	-	Vee+0.5	V	
Receiver						
Single ended data output swing	Vout, pp	175		800	mV	2
LOS-High	-	Vcc – 0.5	-	Vcc	V	
LOS-Low	-	Vee	-	Vee+0.5	V	

Notes:

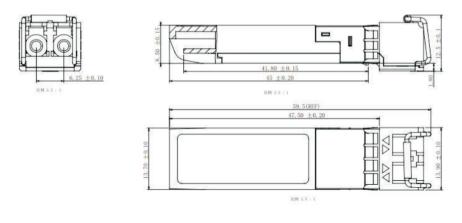
- 1. AC coupled.
- 2. Into 100 ohm differential termination.

3. 20 – 80 %

Optical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Output Opt. Power	РО	-5	-	2	dBm	1
Optical Wavelength	λ	1260	1270	1280	nm	
	λ	1320	1330	1340	nm	
Spectral Width(-20dB)	Δλ	-	-	1	nm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Optical Extinction Ratio	ER	3.5	-	-	dB	
Receiver						
RX Sensitivity @10.3125Gb/s	SENS	-	-	-12	dBm	2,3
Receiver Overload	-	0.5	-	-	dBm	
On the L County of Manual Long with	λC	1320	1330	1340	nm	
Optical Center Wavelength	λC	1260	1270	1280	nm	
LOS De-Assert	LOSD	-	-	-14	dBm	
LOS Assert	LOSA	-40	-	-	dBm	
LOS Hysteresis	-	0.5	-	5	dB	

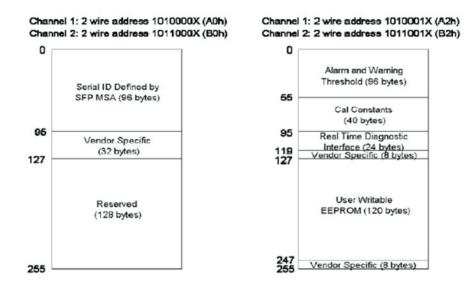
Notes:


1.Class 1 Laser Safety.

2. Measured with conformance signals defined in FC-PI-2 Rev. 10.0 specifications.

3.Measured with PRBS 2 31 -1 at 10 12 BER.

Mechanical Specifications


• ATOP's Compact Small Form Factor Pluggable (CSFP) transceivers are compatible with the dimensions defined by the Compact SFP Multi-Sourcing Agreement (MSA).

APCSPxxB33xDL10

EEPROM Information

• Memory map for 2ch Compact SFP (option 2) is illustrated in below figure. A0h (1010000X) and B0h (1011000X) are the Serial ID addresses for channel 1 and channel 2, respectively A2h (1010001X) and B2h (1011001X) are the Digital Diagnostic addresses for channel 1 and channel 2.

Digital Diagnostic Monitoring Interface

Five transceiver parameter values are monitored. The following table defines the monitored parameter's accuracy.

Parameter	Range	Accuracy	Calibration	
.	0 to +70°C (C)	. 200		
Temperature	-40 to +85°C (I)	±3°C	Internal	
Voltage	2.97 to 3.63V	±3%	Internal	
Bias Current	0 to 100mA	±10%	Internal	
TX Power	-5 to +2dBm	±3dB	Internal	
RX Power	-12 to +0.5dBm	±3dB	Internal	

Revision History

Revision	Initiated	Reviewed	Approved	DCN	Release Date
V1.0	Yangpeiyun	Dingzheng	Dingzheng	New Released.	Dec 19, 2016
V1.1	Yangpeiyun	Dingzheng	Dingzheng	Update Tx power Spec	May 27, 2017
V1.2	Yangpeiyun	Tangzhiqiang	Dingzheng	Update Recommend Circuit Schematic	Nov 27, 2017
V1.3	Tangzhiqiang	Yangpeiyun	Dingzheng	Update the new $\operatorname{template}$	Dec 19, 2019

let's make it personal

atoptechnology.com